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Abstract The winged helix-turn-helix model for the repair
of O6-MeG to guanine involving the reaction of O6-MeG
with a tyrosine residue of the protein O6-alkylguanine-DNA
alkyltransferase (AGT) was examined by studying the
reaction mechanism and barrier energies. Molecular geom-
etries of the species and complexes involved in the reaction,
i.e. the reactant, intermediate and product complexes as well
as transition states, were optimized employing density
functional theory in gas phase. It was followed by single
point energy calculations using density functional theory
along with a higher basis set and second order Mφller-
Plesset perturbation theory (MP2) along with two different
basis sets in gas phase and aqueous media. For the solvation
calculations in aqueous media, the integral equation formal-
ism of the polarizable continuum model (IEF-PCM) was
employed. Vibrational frequency analysis was performed for
each optimized structure and genuineness of transition states
was ensured by visualizing the vibrational modes. It is found
that tyrosine can repair O6-MeG to guanine by a two-step
reaction. The present results have been compared with those
obtained considering the helix-turn-helix model where the
repair reaction primarily involves cysteine and occurs in a
single-step. It is concluded that the repair through tyrosine
envisaged in the winged helix-turn-helix model would be
less efficient than that through cysteine envisaged in the
helix-turn-helix model.
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Introduction

Many cellular and environmental agents continuously
attack DNA in cells, causing a variety of damage to it [1–
5]. The DNA damage sources can be subdivided into two
main types, i.e. exogenous and endogenous. The exogenous
sources include chemical pollutants, UV radiation, e.g. that
from the sun, chemotherapy and radiotherapy while the
endogenous sources include the normal metabolic byprod-
ucts, e.g. the OH radical, ONOO− (peroxynitrite), H2O2 etc.
[6–8]. The agents that cause damage to DNA are also
classified as reactive oxygen species (ROS), reactive
nitrogen oxide species (RNOS) and alkylating agents. Such
damages can be prevented by the action of anti-oxidants
[9]. DNA damage gives rise to aging, chronic inflammatory
diseases, mutation, cancer and neurodegenerative disorders
such as the Alzheimer's and Parkinson's diseases [10–13].

Methylating agents are widespread in the biological
environment and can cause a broad spectrum of DNA
damage [4, 5, 14–16]. Alkyl-DNA lesions can arise from
endogenous sources such as S-adenosylmethionine [17] and
N-methyl-N-nitro-N-nitrosoguanidine (MNNG) [18]. Reac-
tions of alkylating agents with the DNA bases produce
many different adducts that can alter DNA properties [5,
14]. Among these, addition of alkyl groups at the O6
position of guanine is of major importance. Formation of
O6-methylguanine (O6-MeG) can result in G:C to A:T
transversion mutation during replication which is both
mutagenic and cytotoxic [19, 20]. Thus formation of the
O6-MeG lesions is of considerable interest from the point
of view of mutation and cancer [21–23].

The mechanism of repair of O6-MeG to guanine
involves action of the protein O6-alkylguanine-DNA
alkyltransferase (AGT), also known as O6-methylguanine-
DNA methyltransferase (MGMT). Wetmore and coworkers
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[24–26] have studied stacking interactions between the
aromatic amino acids and the natural or methylated
nucleobases and concluded that strengthening of the
stacking interactions upon methylation helps selective
removal of the alkylated bases over the natural bases.
AGT is a natural defense system against DNA damage and
removes numerous alkyl groups from the O6 position of
guanine [27, 28]. The presence of AGT is known to protect
cells from alkylating agent-mediated toxicity including
mutagenesis, cell killing and carcinogenesis [29]. However,
the presence of AGT in tumors also provides resistance to
therapeutic alkylating agents [30]. Another type of DNA
lesion known to be repaired by AGT is O4-methylthymine.
However, the extent of repair of O4-methylthymine to
thymine by AGT is very low [31].

Properties of the DNA bases and base pairs have been
extensively studied [32, 33]. The molecular mechanism of
the repair action of AGT has also been a subject of intense
research. Two models have been proposed in this context.
One of them due to Daniels et al. [34] based on the crystal
structure of AGT bound to DNA is called helix-turn-helix
(HTH) model. According to this model [34], AGT flips the
alkylated base to be repaired out of the stack of the DNA
bases that gets bound to the active site of AGT. In this
model, a cysteine residue (Cys145) receives the alkyl group
removed from the O6 site of guanine. The reaction
mechanism of DNA repair by AGT has been studied
theoretically according to the HTH model using density
functional theory [35].

The second model for the binding of AGT to a DNA
substrate and repair of O6-MeG to guanine known as
winged helix-turn-helix (WHTH) model was proposed by
Goodtzova et al [36]. In this model, a tyrosine residue
(Tyr114) plays the main role in both DNA binding and
alkyl group transfer from O6-MeG. There is no theoretical
study reported so far on the repair of O6-MeG to guanine
according to this model. In the present work, we have
studied the mechanism of repair of O6-MeG to guanine by
tyrosine considering this model.

Computational details

Molecular geometries of the cis and trans isomers of O6-
MeG and those of three most stable conformers of tyrosine
(I, II and III) were fully optimized using density functional
theory at the B3LYP/6-31G(d,p) level in gas phase [37–39].
Geometries of reactant complexes (RCs), intermediate
complex (IC1), transition states (TSs) and product com-
plexes (PCs) involved in the reaction of O6-MeG with
tyrosine as well as with phenol were also optimized at the
B3LYP/6-31G(d,p) level of theory in gas phase. Single
point energy calculations for all the optimized species and

complexes were performed at the B3LYP/AUG-cc-pVDZ
and MP2/AUG-cc-pVDZ levels of theory [40–42] in gas
phase. Ideally, a few specific water molecules placed at
appropriate positions should be included in the treatment of
the solvent effect and also geometry optimization should be
performed in bulk aqueous media. However, in the present
work, solvent effect was treated approximately by solvating
B3LYP/6-31G(d,p) level gas phase optimized structures in
bulk aqueous media using single point energy calculations
at the B3LYP/6–31G(d,p), B3LYP/AUG-cc-pVDZ and
MP2/AUG-cc-pVDZ levels of theory and the integral
equation formalism of the polarizable continuum model
(IEF-PCM) [43–46]. Electrostatic potential-fitted point
charges located at the atomic sites were obtained using
the CHelpG algorithm [47] at the MP2/AUG-cc-pVDZ
level of theory in aqueous media.

Vibrational frequency analysis was performed for each
optimized structure at the B3LYP/6-31G(d,p) level of
theory in gas phase in order to ensure that each searched
total energy extremum was genuine, each minimum having
all real vibrational frequencies and each transition state
having only one imaginary frequency. Genuineness of
transition states was ensured by visually examining the
vibrational modes corresponding to the imaginary frequen-
cies and applying the condition that these connected the
reactant and product complexes properly. As genuineness
of the optimized transition states was obvious, intrinsic
reaction coordinate (IRC) calculations were not performed
for this purpose. Gibbs free energies at 298.15 K and zero-
point energy (ZPE)-corrected total energies were obtained
in each case at the B3LYP/6-31G(d,p) level of theory in gas
phase. As an approximation, the ZPE corrections and
thermal energy corrections giving Gibbs free energies
obtained at the B3LYP/6-31G(d,p) level were also applied
to the total energies obtained by single point energy
calculations at all the other levels of theory employed here
in both gas phase and aqueous media. All the calculations
were carried out using the Windows version of the
Gaussian98 (G98W) [48] program. For visualization of
the optimized structures and vibrational modes, the Gauss-
View program was employed [49].

Results and discussion

Structure and stability

Structures of cis and trans isomers of O6-MeG and those of
three conformers of tyrosine (I, II, III) obtained by
geometry optimization at the B3LYP/6-31G(d,p) level in
gas phase along with the corresponding ZPE-corrected
relative total energies obtained at the MP2/AUG-cc-pVDZ
level in aqueous media are presented in Fig. 1. The ZPE-
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corrected total energies in aqueous media show that the cis
conformer of O6-MeG (defined with respect to the
N1C6O6C10 dihedral angle) is more stable than the trans
conformer at the MP2/AUG-cc-pVDZ level of theory by
2.3 kcal mol−1 while the corresponding Gibbs energy
difference is 2.2 kcal mol−1. Previous X-ray crystallographic
and low level ab initio quantum chemical studies have also
shown that cis O6-MeG is more stable than trans O6-MeG
[50, 51]. The ZPE-corrected total energies in aqueous media
obtained at the MP2/AUG-cc-pVDZ level of theory show
that the II and III conformers of tyrosine are less stable than
the I conformer by 0.1 and 1.4 kcal mol−1 respectively. Thus
the conformers I and II of tyrosine differ only in the
orientation of the OH group and have comparable stabilities
in aqueous media. The present study was performed
considering only the I conformer, but one would expect
similar results if the II conformer is considered. The same
three stable conformers of tyrosine (I, II and III) in gas phase
have also been reported by Zhang et al. [52].

The optimized structure of the reactant complex of
cis O6-MeG with a phenol molecule and those of the
reactant complexes of cis O6-MeG with the three con-
formers I, II, III of tyrosine, denoted as RC1, RC2, RC3
and RC4 respectively, at the B3LYP/6-31G(d,p) level of
theory in gas phase are presented in Fig. 2. Values of some
important geometrical parameters of the four complexes
are also given in this figure. According to the ZPE-
corrected total energies obtained at the MP2/AUG-cc-
pVDZ level of theory, RC3 and RC4 are less stable than
RC2 in aqueous media by 1.7 and 5.6 kcal mol−1

respectively (Fig. 2). The complexes RC2 and RC3 are
stabilized by two hydrogen bonds each, i.e. a strong
hydrogen bond between the N1 atom of cis O6-MeG and
the H14 atom of the hydroxyl group of tyrosine and a
week hydrogen bond between the H2' atom of the amino
group of cis O6-MeG and the O15 atom of the hydroxyl
group of tyrosine in each case. However, RC4 is stabilized
by a single hydrogen bond between the N1 atom O6-MeG
and the H14 atom of the hydroxyl group of tyrosine. The
N1H14 distances in RC2, RC3 and RC4 are 1.822, 1.822,
1.866 Å while the H2

′O15 distances in the three
complexes are 2.183, 2.186, 2.757 Å respectively
(Fig. 2). As RC2 is most stable among the three reactant
complexes, reactions between cis O6-MeG and tyrosine
were considered to be initiated from it.

Repair of O6-methylguanine to guanine

We studied the mechanism of repair of O6-MeG to guanine
by tyrosine starting with the reactant complex RC2. Details
of the reaction involving the reactant complex RC2,
transition states TS1 and TS2, intermediate complex IC1
and product complex PC1 are shown in Fig. 3. Since this
reaction manly involves the phenol moiety of tyrosine, the
reaction was also studied considering only a phenol
molecule in place of tyrosine, and the results thus obtained
are presented in Fig. 4. The reactions shown in both the
Figs. 3 and 4 involve two steps each. In the first step of
each of these reactions, the N1 site of O6-MeG gets
protonated as the H14 proton leaves the hydroxyl group of
tyrosine and gets associated with it. In the second step of
each of the reactions (Figs. 3, 4), the methyl group of O6-
MeG gets detached from the O6 site of guanine and gets
attached to the O15 site of the phenolate moiety. The ZPE-
corrected barrier and released energies and net CHelpG
charges (in the unit of magnitude of electronic charges)
obtained at the MP2/AUG-cc-pVDZ level of theory in
aqueous media using the geometries optimized at the
B3LYP/6-31G(d,p) level of theory in gas phase along with
certain optimized geometrical parameters are shown in
Fig. 3. The ZPE-corrected barrier and released energies and
the corresponding Gibbs energy changes obtained at the
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Fig. 1 Two (cis and trans) conformers of O6-MeG (a, b) and three
(TyrI, TyrII and TyrIII) conformers of tyrosine (c, d, e). Relative ZPE-
corrected total energies (kcal mol−1) of (a) and (b) obtained in aqueous
media at the MP2/AUG-cc-pVDZ level of theory using the geometries
optimized at the B3LYP/6-31G(d,p) level in gas phase are given with
respect to that of (a). Relative ZPE-corrected total energies (kcal mol−1)
of (c), (d) and (e) obtained in aqueous media at the MP2/AUG-cc-
pVDZ level of theory using the geometries optimized at the B3LYP/6-
31G(d,p) level in gas phase are given with respect to that of (c)
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different levels of theory in gas phase and aqueous media
are presented in Table 1.

In going from RC2 to TS1, the H14 proton of tyrosine
leaves the hydroxyl group attached to the benzene ring of
tyrosine and moves near the N1 atom of cis O6-MeG
(Fig. 3). The N1H14 distance at TS1 is 1.360 Å and so the
corresponding bond is not yet formed. The intermediate
complex (IC1) is formed when the H14 proton gets
bonded to the N1 atom of O6-MeG. In the second step
of the reaction, the methyl group moves from the O6
position of cis O6-MeG towards the O15 atom of the
phenolate moiety of tyrosine. At TS2, the C10 atom of the
methyl group is located between the O6 and O15 atoms,
the O6C10 and O15C10 distances being 1.977 and
2.104 Å respectively. After TS2, the product complex
PC1 is formed. In the product complex PC1 (Fig. 3),
guanine is recovered from O6-MeG while tyrosine is
converted to O-methyl tyrosine. At IC1, the CHelpG
charges associated with the protonated O6-MeG and
deprotonated tyrosine moieties were found to be 0.89
and −0.89 that are in conformity with the cationic and
anionic nature of the two species respectively.

The calculated ZPE-corrected barrier energies (ΔEb)
and the corresponding Gibbs energy changes ΔGb

involved in the reaction of O6-MeG with tyrosine (Table 1)
reveal the following information. At the first step of the
reaction, the gas phase barrier energy (∆E1

b) and the
corresponding Gibbs energy change (ΔG1

b) at the B3LYP/
6-31G(d,p) level of theory were found to be 21.5 and
21.0 kcal mol−1 respectively, the corresponding values
obtained at the B3LYP/AUG-cc-pVDZ level being 24.1
and 23.6 kcal mol−1 (Table 1). The ∆E1

b and ∆G1
b values

at the MP2/AUG-cc-pVDZ level of theory in gas phase
were also found to be similar to those obtained by the
corresponding B3LYP calculations (Table 1). In going
from gas phase to aqueous media, according to the B3LYP
calculations, the values of ∆E1

b and ΔG1
b are somewhat

reduced except in one case where there is a small increase,
while according to the corresponding MP2 calculations
the values of these energies are appreciably increased. We
should consider the MP2 results to be more reliable than
the corresponding B3LYP results, in view of a better
electron correlation treatment in the former case than in
the latter. At the second step of the reaction (Fig. 3), the
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Relative ZPE-corrected total energies (kcal mol−1) of RC2, RC3 and
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media using the geometries optimized at the B3LYP/6-31G(d,p) level
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31G(d,p) level in gas phase (Å, degree) are given
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ZPE-corrected barrier energies (ΔE3
b) and the

corresponding Gibbs energy changes (ΔG3
b) at the

B3LYP/6-31G(d,p) and B3LYP/AUG-cc-pVDZ levels of
theory in gas phase were found to lie in the range 41.0–
43.5 kcal mol−1. The values of ΔE3

b and ΔG3
b at the

MP2/AUG-cc-pVDZ levels of theory in gas phase were
found to be 43.9 and 45.4 kcal mol−1 respectively. In
going from gas phase to aqueous media at the different

levels of theory, the values of ΔE3
b and ΔG3

b are changed
only slightly. The ZPE-corrected barrier and Gibbs
energies (ΔE3

b and ΔG3
b) that have values around

40 kcal mol−1 or more are too large to be overcome in
biological media. Therefore, such reaction steps would
not occur.

The results discussed above (Fig. 3, Table 1) show that it
is the phenolic part of tyrosine that is involved in the repair
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reaction of O6-MeG. In order to evaluate qualitatively the
role of the chain attached to the phenol moiety of tyrosine,
the repair reaction was also studied considering only a
phenol molecule in place of tyrosine. The results thus
obtained are presented in Fig. 4 and Table 2. The reactant
complex RC1, transition states TS3 and TS4, intermediate
complex IC2 and product complex PC2 involved in the
repair of cis O6-MeG to guanine by a phenol molecule at
the B3LYP/6-31G(d,p) level of theory in gas phase along
with certain optimized geometrical parameters are shown in

Fig. 4. The ZPE-corrected barrier and released energies and
net CHelpG charges obtained at the MP2/AUG-cc-pVDZ
level of theory in aqueous media for this system are also
given in Fig. 4. The ZPE-corrected barrier and released
energies and the corresponding Gibbs energy changes in the
reaction of O6-MeG with phenol (Fig. 4) obtained at the
different levels of theory in gas phase and aqueous media
are presented in Table 2.

The values of the ZPE-corrected barrier energy (∆E5
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for the first step of the reaction (Fig. 4) obtained at the
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Fig. 4 Mechanism of repair of cis O6-MeG due to its reaction with
phenol. ZPE-corrected barrier(∆Eb) and released (∆Eb) energies (kcal
mol−1) and net CHelpG charges obtained at the MP2/AUG-cc-pVDZ

level of theory in aqueous media, and certain optimized geometrical
parameters (Å, degree) obtained at the B3LYP/6-31G(d,p) level of
theory in gas phase are given
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B3LYP/6-31G(d,p), B3LYP/AUG-cc-pVDZ and MP2/
AUG-cc-pVDZ levels of theory in gas phase were
found to be 19.2, 17.4 and 15.8 kcal mol−1 respectively.
The Gibbs energy changes (∆G5

b) for this reaction step
were found to be larger than the corresponding ∆E5

b

values by ~2.1 kcal mol−1 each (Table 2). In going from
gas phase to aqueous media at the different levels of
theory, ∆E5

b and ∆G5
b were reduced on the average by

~1.6 kcal mol−1 (Table 2). For the second step of the
reaction (Fig. 4), the ZPE-corrected barrier energies
(∆E7

b) were found to be 35.7, 32.9 and 29.9 kcalmol−1

at the B3LYP/6-31G(d,p), B3LYP/AUG-cc-pVDZ and
MP2/AUG-cc-pVDZ levels of theory in gas phase respec-
tively while the corresponding Gibbs energy changes
∆G7

b were found to be ~2.1 kcal mol−1 larger than ∆E7
b.

In going from gas phase to aqueous media, ∆E7
b and ∆G7

b

were found to be reduced on the average by ~3.2 kcal
mol−1 at the different levels of theory (Table 2). A
comparison of the barrier energies and Gibbs free energies
involved in the reaction of O6-MeG with tyrosine or
phenol (Tables 1, 2) shows that the chain attached to the
phenol moiety in tyrosine increases the barrier energies
and Gibbs energy changes significantly.

We may compare the present results with those
obtained for the repair of O6-MeG to guanine by
cysteine in the absence or presence of histidine [35,
53]. There are two differences between the results
obtained in the two cases: (i) While there is a single
energy barrier when the repair is accomplished with
cysteine in the absence or presence of histidine, there are

Table 1 ZPE-corrected barrier (ΔEb) and released (ΔEr) energies and the corresponding Gibbs energy changes ΔGb and ΔGr respectively
(kcal mol−1) involved in the reaction of O6-MeG with tyrosine obtained at different levels of theory in gas phase and aqueous mediaa

Barrier, released energies and corresponding Gibbs energy changesb Level of theoryc

B3LYP/6-31G(d,p) B3LYP/AUG-cc-pVDZ MP2/AUG-cc-pVDZ

ΔE1
b 21.5 (22.9) 21.0 (18.6) 22.1(25.1)

ΔG1
b 24.1 (22.3) 23.6 (21.2) 23.7(27.7)

ΔE2
r −4.1 (−9.6) −5.4 (−5.8) −4.4(−11.2)

ΔG2
r −5.0 (−6.9) −5.9 (−6.8) −4.4(−12.2)

ΔE3
b 43.5 (43.8) 42.9 (41.3) 45.4(44.8)

ΔG3
b 42.1 (41.9) 41.0 (39.8) 43.9(43.4)

ΔE4
r −59.7 (−61.9) −57.4(−59.7) −61.9(−55.4)

ΔG4
r −60.4 (−62.7) −58.2(−60.4) −62.6(−56.1)

a Energies obtained in aqueous media are given in parentheses
b See Fig. 4 for definition of the energies
c Single point energy calculations were performed at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels employing the geometries
optimized at the B3LYP/6-31G(d,p) level. In aqueous media, single point energy calculations were performed using the IEF-PCM

Table 2 ZPE-corrected barrier (ΔEb) and released (ΔEr) energies and the corresponding Gibbs energy changes ΔGb and ΔGr respectively
(kcal mol−1) involved in the reaction of O6-MeG with phenol molecule obtained at different levels of theory in gas phase and aqueous mediaa

Barrier, released energies and corresponding Gibbs energy changesb Level of theoryc

B3LYP/6-31G(d,p) pVDZ B3LYP/AUG-cc-pVDZ MP2/AUG-cc-

ΔE5
b 19.2 (17.8) 17.4 (15.9) 15.8(14.0)

ΔG5
b 21.4 (19.9) 19.6 (18.1) 17.9(16.2)

ΔE6
r −2.8 (−4.1) −1.8 (−3.2) −1.5 (−0.0)

ΔG6
r −5.7 (−7.0) −4.7 (−6.2) −1.5 (−2.9)

ΔE7
b 35.7 (32.8) 32.9 (29.3) 29.9 (26.8)

ΔG7
b 37.8 (34.9) 35.0 (31.4) 31.9 (28.9)

ΔE8
r −52.3 (−49.5) −49.0 (−45.5) 46.1 (−41.7)

ΔG8
r −54.0 (−51.2) −50.7(−47.2) −47.8 (−43.5)

a Energies obtained in aqueous media are given in parentheses.
b See Fig. 3 for definition of the energies.
c Single point energy calculations were performed at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels employing the geometries
optimized at the B3LYP/6-31G(d,p) level. In aqueous media, single point energy calculations were performed using the IEF-PCM.
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two energy barriers when the repair is effected with
tyrosine, and (ii) In the work of Georieva and Himo [35],
the barrier energy for the repair of O6-MeG to guanine by
cysteine in the presence of histidine was found to be
18.2 kcal mol−1 when the cluster model was considered
while it was found to be 21.2 kcal mol−1 when a
homogeneous surrounding model was considered. In
another work, the ZPE-corrected barrier energy obtained
by a single point energy calculation at the MP2/6-31+G
(d) level in aqueous media using the geometry optimized
at the B3LYP/6-31+G(d) level was found to be 29.2 kcal
mol−1 [53]. In the case of tyrosine, according to the
present work, the corresponding reaction can be effected
by overcoming two barriers, one with energy 25.1 kcal
mol−1 and the other with energy 44.8 kcal mol−1 as
obtained by single point energy MP2/AUG-cc-pVDZ
calculations in aqueous media using the geometries
optimized at the B3LYP/6-31G(d,p) level in gas phase.
In view of the large barrier energies, it appears that the
repair of cis O6-MeG to guanine by tyrosine would be
highly improbable. Thus it appears that only the HTH
model would be feasible for the repair reaction in
question, while the WHTH model would practically be
inoperative.

Conclusions

The present study leads us to the following conclusions:

1. Tyrosine can repair O6-MeG to guanine by a two-step
reaction, the first barrier energy being appreciably less
than the second one. Further, this reaction mainly
involves the phenol moiety of tyrosine.

2. There are two differences between the repair
reactions of O6-MeG to guanine accomplished with
cysteine, in the presence or absence of histidine, or
with tyrosine. First, in the case of cysteine, the
reaction involves a single step while in the case of
tyrosine, the reaction involves two steps. Second,
the barrier energy in the case of cysteine is much
less than the second barrier energy in the case of
tyrosine.

3. On the basis of barrier energies, it appears that the
repair of cis O6-MeG to guanine by tyrosine would be
highly improbable. In other words, it appears that only
the HTH model would be feasible for the repair of cis
O6-MeG to guanine, while the WHTH model would be
practically inoperative.
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